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Abstract

A research overview and management vision are presented, resulting from 13 years of
research into the possibilities of reintroduction of the seagrass Zostera marina in the Dutch
Wadden Sea. It is concluded that presently (1) suitable donor populations are available, (2)
light is not limiting to Z. marina to at least 0.80 m below mean sea level, (3) below -0.20 m
mean sea level, water movements (particularly the duration) are too severe, unless shelter
is available, (4) high nutrient loads restrict the area of high potential Z. marina habitats to
areas with freshwater influences, (5) muddy sediments and a permanent layer of water
during low tide are favourable, (6) two types of Z. marina occurred in the pre-1930s
Wadden Sea, each suitable for a different tidal depth. Main recommendations are to (1)
restore estuarine gradients, (2) decrease nutrient (particularly nitrogen) loads, (3) restore
areas with shelter (for example created by mussel beds, which have largely disappeared but
probably can be restored, actively or passively), (4) carefully select transplantation sites:
locally (muddy sediments with a permanent layer of water during low tide) and regionally
(freshwater influence and shelter) (5) improve the present GIS map with the Z. marina
habitat suitability of the Dutch Wadden Sea by including data on salinity and nutrient
loads, and (6) prohibit fisheries activities in potential seagrass habitats.

Introduction

In this review, the results of 13 years of
research into the possibilities of
reintroduction of the seagrass Zostera
marina L. in the Dutch Wadden Sea are
summarised and a management vision is
presented. To make scientific knowledge
more accessible to policymakers and
stakeholders, a more receptive
presentation is required, particularly by
visualisation (de Jonge et al., this
volume). Therefore, it was chosen to
break academic tradition of minimising
the number of figures: the main
information provided in this review can
be acquired by reading the figures with
the figure captions and subsequently the

lists provided in the paragraphs
‘conclusions’, ‘recommendations’ and
‘new questions’.

Use and history of seagrass in the
Wadden Sea

In the Wadden Sea, two species of
seagrass occur, a smaller species, Zostera
noltii Hornemann, and a larger species, Z.
marina L., or eelgrass (Fig. 1). This study
focuses on Z. marina. Seagrasses are
higher plants, having flowers, seeds,
rhizomes and roots. In the Dutch Wadden
Sea Z. marina beds were of great
economic importance. The plants were
collected from the beaches, and later they
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Figure 1. The Wadden Sea, and sites that are referred to in the text; major freshwater
(riverine) influences are indicated by arrows. Two species of seagrass occur in the Dutch
Wadden Sea: Zostera noltii (a) and Z. marina. This study focuses on Z. marina
(photograph taken at Terschelling).

were fished or even mown (Fig. 2). The
freshwater-rinsed and dried seagrass
plants were used as roofing and isolation
material, and to fill mattresses and
cushions. Before 1857, it was used to
build dikes (Martinet, 1782; Sloet tot
Oldhuis, 1855; Oudemans et al., 1870).
The first written references to the
building of dikes of seagrass date back to
the 13th century (Oudemans et al., 1870).
Already in the 18th century the urgency
was felt for the development of a method
to multiply eelgrass, as 'one cannot have

too much of it' (Fig. 3; Martinet, 1782).
Less is known about the past German and
Danish beds. Probably, these beds had
small or no economic value (van den
Hoek et al., 1979).

Habitat and nursery, sediment
stabilisation

Apart from this direct economic value of
seagrass, numerous indirect economic
advantages are reported for seagrass beds.
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Figure 2. Harvesting of Zostera marina at the beginning of the 20th century. The plants
were mown or collected. The seagrass had direct economical value (e.g. roofing and
isolation material, filling of cushions and mattresses). Indirectly economic values of
seagrasses are their nursery and habitat function (e.g. juvenile fish and crustaceans) and
sediment stabilisation effect. The photographs were kindly supplied by T. Duinker.

Seagrass beds are a source of food for
young fish and for crustaceans:
particularly its luxuriant epiphytic flora
and fauna are the main source of food for
many small fish and invertebrates, which
in their turn are eaten by commercially
important fish species, whereas their
remains, the detritus, form the basis for a
complex food web (e.g., van Goor, 1919;
den Hartog, 1970; Thayer et al., 1984;
Fonseca et al., 1990; Heck et al., 1995;
Horinouchi & Sano, 1999; Mattila et al.,
1999). This nutrient cycling ability of
seagrass and algal beds led Costanza et
al. (1997) to estimate their value as
19,000 US$ per ha per year (in
comparison: coral reefs 6100; forests 969,
cropland 92 US$ ha-1yr-1). Priceless,

however, is their contribution to
biodiversity and habitat diversity of
coastal waters. Furthermore, the plants
are known to stabilise sediments (e.g.,
Rasmussen, 1977; Fonseca, 1996), to
reduce particle loads (e.g., Gacia et al.,
1999) and to act as a sink for nutrients
(Asmus & Asmus, 1998), in this way
improving water quality.

Why did the seagrass Zostera marina
decline in the 1930s?

Before the 1930s the Dutch Wadden Sea
contained large beds of subtidal and
intertidal seagrass (Zostera marina)
covering an area between 65 and 150 km2
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Figure 3. Already in 1782, Martinet discusses the possibilities to multiply eelgrass
(courtesy library of University of Groningen).

(Oudemans et al., 1870; den Hartog &
Polderman, 1975). During the 1930s, the
seagrass cover in the Wadden Sea was
largely lost and the beds never recovered
(e.g., den Hartog, 1987; Reise et al.,
1989). Presently, Z. marina occurs only
in the mid-littoral: approximately 0.87
km2 of Z. marina and 0.26 km2 Z. noltii
in the Dutch Wadden Sea (de Jong,
2000). In the German Wadden Sea, Z.
noltii and Z. marina together cover
approximately 170 km2, and in the
Danish part ca. 30 km2 (Reise & Buhs,
1991). The large-scale decline of Z.
marina coincided with (1) the outbreak of
wasting disease caused by the slime-mold
Labyrinthula zosterae, (2) increased
diking and damming activities,
particularly the construction of the
'Afsluitdijk' and (3) two subsequent years
with a considerable deficit of sunlight.

There is no consensus about which of
these events (or combination of events)
caused this decline (reviews in den
Hartog, 1996; de Jonge et al., 1996).

Why didn't the beds recover?

Whereas in other North Atlantic areas
eelgrass beds recovered after the wasting
disease epidemic in the 1930s, the Dutch
Wadden Sea beds failed to recover
(review in den Hartog, 1996). Main
causes for the lack of recovery of eelgrass
stands in the Dutch Wadden Sea were
thought to be high turbidity, and later
shellfish fishery (Fig. 4, van den Hoek et
al., 1979; Giesen et al., 1990a; b; de
Jonge & de Jong, 1992). In the late
1980s, the eelgrass habitat in the Wadden
Sea had partly been restored with respect
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Figure 4. Destructive effects of shellfish fishery on seagrass beds. (a) tracks in the Zostera
marina at the Plaat, Terschelling (photograph by V.N. de Jonge), (b) tracks in a Z. noltii
bed at Oosterend, Terschelling (aerial photograph by the author; the distance between A
and B is approximately 500 m).

to these crucial factors: turbidity had
decreased and shellfish fishery was
prohibited in some areas (de Jonge & de
Jong, 1992; Dankers, 1998). 26% of the
intertidal area was closed for shellfish
fishery in 1993 (Dankers, 1998). For this
reason, restoration was thought to be
feasible. The Dutch government is
currently attempting to return seagrass to
the Wadden Sea, in order to 'restore
natural values' (Anonymous, 1989).

Seagrass restoration projects
worldwide

Restoration efforts of diminished
seagrass beds have been performed in
many parts of the world, for example in
North and Central America (review in
Fonseca et al., 1998; Sheridan et al.,
1998; Orth et al., 1999), Australia (e.g.,
Paling et al., 1998; 2000a, b; Lord et al.,
1999), Japan (e.g., Kawasaki et al., 1988;
Watanabe & Terawaki, 1986), but also in
Europe: Great Britain (Ranwell et al.,
1974), Denmark (Christensen et al.,
1995), Italy (Balestri et al., 1998; Piazzi
et al., 1998), and France (Meinesz et al.,

1991; 1992; 1993; Molenaar et al., 1993).
In the Dutch Wadden Sea, perhaps the
eldest history of seagrass restoration was
recorded by Reigersman et al. (1939),
describing transplantation efforts of Mr.
F. Duinker in Texel after the seagrass
catastrophy in the 1930s.
Transplantations at an experimental,
small scale were performed in the
Wadden Sea in the same period by
Harmsen (1936), in a cross-
transplantation of subtidal and intertidal
seagrass.

Particularly in the case of
mitigation (compensation of permitted
seagrass losses caused by for instance
land reclamation, port building or
dredging activities), restoration projects
are carried out at a large scale. In the
United States, a total of 78 ha has been
transplanted according to a review by
Fonseca et al. (1998). In some cases,
mechanical injection of a nutrient and
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Figure 5. Overseas, restoration projects are sometimes carried out at a large scale,
particularly when donor beds are due to be destructed by permitted dredging or
construction activities (mitigation). Two examples of the use of boats in seagrass
restoration projects are shown: (a) in Florida, as a fertiliser/hormone injection machine
(Kenworthy et al., 2000, photographs kindly supplied by J. Anderson), and in SW
Australia where the "EcosubII" (b, c) is used to transplant seagrass sods (Paling et al.,
2000a, photographs reproduced with permission of Cockburn Cement Limited, Western
Australia).

growth hormone solution was used (Fig.
5a; e.g., Kenworthy et al., 2000). In
Australia, 2 ha have been transplanted
(Lord et al. 1999), mostly by a
mechanical harvester and planter (Fig. 5b
and c, Paling et al., 2000a). In Japan
several tens of hectares were transplanted
near Hiroshima in recent years (many
publications in the 1990s in Japanese, A.
Meinesz pers. comm.).

Approach in the Dutch Wadden Sea

In the Dutch programme for
reintroduction of eelgrass in the Wadden
Sea, the approach is as follows: (1) to
estimate the possibilities, (2) to optimise

the chances, and then (3) to transplant at
the smallest scale possible.

Maximum depth and donor
populations

We empirically assessed the maximum
depth of possible Zostera marina growth
in Wadden Sea water in an outdoor
mesocosm experiment (Fig. 6). In the
same experiment, we tested donor
suitability of five northwest European
populations. Three out of five Z. marina
populations were successfully
transplanted into the Wadden Sea
mesocosm. If turbidity in the Wadden
Sea remains at the level of the 1990s



179

(k=1.5 m-1 or less; de Jonge et al., 1996),
the mesocosm study predicted that Z.
marina depth limits are at least -0.80 m
Mean Sea Level (MSL), which
corresponds  to  approximate  low  tide in
most of the Dutch Wadden Sea (van
Katwijk et al., 1998).

Pilot transplantations fail

These positive results led to experimental
transplantations on a number of tidal flats
in 1993. Mainly historical seagrass
locations were selected, i.e., beds were
present in the 1970s. The transplanted
plants survived in a narrow zone around
MSL. However, in the second growing
season, insufficient seedlings emerged to

maintain the population (van Katwijk &
Schmitz, 1993; Hermus, 1995; van
Katwijk & Hermus, 2000). Three
possible causes for these losses are likely:
(1) germination and/or seedling survival
is reduced at the transplantation site in
comparison to the donor site, (2)
coincidental climatologic circumstances,
e.g., an extreme salinity drop in January
1994 (caused by exceptionally high river
discharges in the winters of 1993/1994),
causing unusually early germination,
followed by a prolonged cold period
during which the young seedlings froze
to death. (3) A large part of the seed
stalks containing seeds may have drifted
towards the open sea before they released
their seeds.

Intermezzo 1. Minimum viable population size

Survival of a population, for instance over a period of 100 years, is threatened by three
types of risks: demographic, environmental and genetic stochasticity. Demographic
risks are determined by birth and death rates. This involves, amongst others, seed
production and the effectiveness of pollen and seed distribution. This is density-
dependent: both pollen and rafting seed shoots can be 'trapped' by the plants; a lower
plant density increases the chance of pollen and seed shoots to drift to the open sea. It is
also area dependent: the larger the area of the seagrass colony, the larger the chance that
pollen or seed shoots become eventually trapped. Once released, the seeds travel not
more than a few metres (Orth et al., 1994). Environmental risks involve stochastistic
events like storms, but also simple ecology: favourable conditions promote rapid
expansion of a founding colony, and decrease the risk of extinction of even very small
colonies. Genetics risks occur when genetic diversity is insufficient to keep the
population fit, both in long term, when the environment might alter, and in short term.
Recently, Williams (2001) showed that more Zostera marina seeds germinated from a
genetically diverse, untransplanted population than from a transplanted population with
low genetic diversity. Also, leaf shoot density in high-diversity eelgrass increased
almost twice as fast as in low-diversity eelgrass over 22 months (Williams, 2001).
Natural Z. marina populations generally have a large genetic diversity (Reusch et al.,
2000; in press); inbreeding depression is known to occur (Reusch, 2001), and reduced
genetic diversity has negative effects on Z. marina leaf shoot density and recruitment
from seed (Williams 2001).

Note that the environmental, demographic and genetic factors cannot be
considered as independent variables. Several interactions are known, for instance
fertility can be affected by inbreeding (e.g. Booy et al., 2000); the rafting of seed shoots
or pollen will be lower in sheltered conditions (see above), and, in general, site
conditions affect birth and death rates.
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Figure 6. Experiments with a mesocosm basin in Texel showed that light was sufficient to
at least –0.80 m MSL, and suitable donor populations were available (two Wadden Sea
populations and one population from SW Netherlands were suitable, as opposed to an
Atlantic and a Baltic population).

Intermezzo 2.  Nomenclature

The flexible type with less rigid bases, lying flat on the sediment, was named Zostera
hornemanniana by Tutin (1936; 1938; 1942). Subsequently, Tutin called it Z.
angustifolia (Hornem.) Rchb. (Clapham et al., 1962; Tutin et al., 1980), a name still in
use in Great Britain (overview by Kay et al., 1998). By Harmsen (1936) it was named
Z. marina var.  stenophylla Aschers. & Graebner. The robust type with bases that stick
up in the air for a centimetre or two when exposed at low tide is unanimously called Z.
marina L. Presently, in white literature, both types are referred to as Z. marina L., as no
taxonomically distinctive features could be found (den Hartog, 1972). According to den
Hartog (pers. comm.) the difference in length of style + stigmas being longer in Z.
marina than in Z. hornemanniana (Tutin, 1936) is an artefact: presumably the examined
specimen of Z. hornemanniana was collected after fertilisation, when the upper part of
the styles had fallen off, whereas the specimen of Z. marina was collected before
fertilisation.
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Figure 7. Zostera marina transplantation experiments (planting units of 1 m2) showed that
plants disappeared below –0.20 m MSL. It was hypothesised that this was due to either (1)
water quality (lower tidal depth -> longer period of exposure to the water), or (2)
increasing water dynamics with increasing tidal depth. Both hypotheses were tested.

Measures to support sustainable
settlement

Proceeding from these three possible
causes for insufficient recruitment from
seed, measures to increase the chances
for long-term survival of transplantations
are:

Measure 1. Selection of locations
where the conditions are not only suitable
for adult plants, but also for germination
and/or seedling survival. Field
experiments at Balgzand (Fig. 1) revealed
that germination was favoured by muddy
sediments (footprint depth circa 3 cm) as
compared to sandy sediments; seedling
survival and proliferation was favoured
by a permanent layer of water covering
the plants at low tide, for instance in local

depressions, as compared to sites with
complete emergence at the same tidal
depth, and by a sheltered location (van
Katwijk & Wijgergangs, 2000).

Measure 2. Spreading of risks, in
space and time, to cope with coincidental
adverse weather conditions.

Measure 3. Development of a
method to keep the rafting reproductive
shoots within the area that was thought to
be suitable for bed development, until a
minimum viable population size is
reached, see intermezzo 1.

Additionally, from literature rises
Measure 4. Application of genetically
diverse donor material, to keep the
transplantation adaptable and avoid
inbreeding depression (Booy et al., 2000;
Williams, 2001, see intermezzo 1).
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Figure 8. In two laboratory experiments using glass containers testing water quality, we
found (1) that ammonium was toxic to Zostera marina, and (2) that high nutrient loads had
a positive effect when salinity was low, but a negative effect when salinity was high (see
Fig. 9).

Depth-related transplantation success
raised new questions

Another finding of the transplantation
experiments was that the transplanted
seagrasses disappeared below -0.20 m
MSL within one month. At that depth,
light was not limiting (van Katwijk et al.,
1998; van Katwijk & Hermus, 2000)
from which it was hypothesised that
either some water quality factor was
unsuitable to sustain eelgrass, or physical
disturbance was too high at larger depths.

Water quality factors: nutrients and
salinity

Introduction

Probably, the most influencing water
quality factor is nutrient load (Short &
Echeverria, 1996; Hemminga & Duarte,
2000). Nutrient loads have severely

increased in the Wadden Sea (review in
van Katwijk et al., 2000), and particularly
the following factors, that are part of, or
interacting with nutrient load, were of
interest:
• Nitrate: In the United States, a

negative, probably toxic effect of
nitrate on Z. marina is reported
(Burkholder et al., 1992).

• Ammonium: it is well known that
high ammonium levels in the water
layer can be toxic to plants. However,
ammonium toxicity to submerged
aquatic plants has been given little
attention. It had been observed in a
few freshwater aquatic plants
(Glänzer, 1974; Grube, 1974; Agami
et al., 1976; Glänzer et al., 1977;
Roelofs, 1991; Smolders et al., 1996).
It had not been reported for Z. marina
or any other seagrass.

• Salinity: patterns of distribution and
decline of Z. marina in the
Netherlands    indicated    a    negative
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Figure 9. Vitality of Zostera marina plants originating from the Ems estuary, after six
weeks at different combinations of salinity (psu, generally equal to promille S) and nutrient
loads (l low, m medium, h high). Vitality (mean + standard error of the mean) = number of
shoots + size - necrosis - number of missing leaves, where size was the average between
leaf length, width and total biomass of the plants; all parameters were standardised to mean
2 (to avoid negative values) and unit variance prior to the calculation. ANOVA revealed a
negative effect of nutrients in the two higher salinity treatments (p<0.01, N=4), whereas
nutrients tended to respond positively to nutrients at the lowest salinity treatment (p=0.1,
N=2) (van Katwijk et al., 1999).

effect of a high salinity, particularly
above 30.5 psu (de Jong, pers. comm.;
Wijgergangs & van Katwijk, 1993;
Wijgergangs, 1994; Wijgergangs & de
Jong, 1999). This was confirmed by
laboratory experiments with Z.
marina shoots (Kamermans et al.,
1999; van Katwijk et al., 1999), as
well as germination and seedling
development experiments (e.g.,
Hootsman et al., 1987) showing a
negative effect of salinity on Z.
marina.

Therefore, we investigated the effects of
nutrients and salinity on Zostera marina
in two laboratory experiments. One
laboratory experiment revealed that high
loads of ammonium are toxic to eelgrass
(Fig. 8; van Katwijk et al., 1997). A
second laboratory experiment, simulating
present nutrient loads in the present
Wadden Sea showed an interactive effect
with salinity on Z. marina: at a normal

salinity (30 psu) these nutrient loads had
a negative effect, whereas at a lowered
salinity (23 psu) the nutrient load had a
positive effect on Z. marina development
(Fig. 9; van Katwijk et al., 1999).

Comparison to the field situation

The interactive effect correlates with
distribution and decline patterns of Z.
marina in many areas of the northern
hemisphere. For example, in The
Netherlands, with its variety of marine
(ca. 30 psu) and estuarine (15 to 25 psu)
environments, we observed that the
distribution of Z. marina in marine
environments was limited to waters with
low to moderate nutrient concentrations,
viz. in summer, monthly median values
varied between 0-4 ìM NO3, 1-8 ìM
NH4, 2-10 ìM Ptot and in winter between
15-55 ìM NO3, 7-11 ìM NH4 3-8 ìM
Ptot. However, Z. marina was observed to
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Figure 10. Postulated interactive effect of nutrients, viz. ammonium, and any growth
reducing factor (for example high salinity) on potential plant habitats. Darker shades
indicate greatest plant vitality.

flourish in estuarine environments with
relatively high nutrient concentrations,
viz. in summer, monthly median values
varied between 0-90 ìM NO3, 2-11 ìM
NH4, 7-25 ìM Ptot an in winter between
50-260 ìM NO3, 15-55 ìM NH4 and 8-
20 ìM Ptot (Ministry of Transport, Water
Management and Public Works,
unpublished data on the southwest
Netherlands and the Dutch Wadden Sea).
Furthermore, in some marine
environments, seagrass distribution
shifted towards areas with some
freshwater influence (Burdick et al.,
1993).

Our findings refer to a general principle

Probably, the interactive effect of
nutrients having a positive effect on Z.
marina at low salinity, and a negative
effect at high salinity, relates to a general
principle: probably faster growing Z.
marina can accommodate for the higher
nutrient availability by fast uptake and
incorporation. In this case, accumulation
of N is prevented. However, in slower
growing marine populations, increased

nutrient availability cannot be used for
growth. N will accumulate, leading to
inhibition of plant development and
eventually death by toxicity. The same
interactive effect was found when
comparing slow-growing seagrasses with
fast-growing macroalgae (Pedersen,
1995) and in several terrestrial and
freshwater species and vegetation types
(e.g., Roelofs, 1986; Roelofs et al., 1996;
Bobbink et al., 1998). This means that in
the process of eutrophication, relatively
slow-growing species can maintain
themselves only when conditions are
optimal in all other aspects, keeping their
growth rate as high as possible (Fig. 10).
Growth rates of Z. marina drop when
salinity is high (32 psu as compared to 22
psu) (Kamermans et al., 1999). In the
Wadden Sea, nutrient loads have
increased during the last century (e.g.,
van Katwijk et al., 2000), thus confining
the potential seagrass habitat to areas
with freshwater influence, or to areas
where nutrient loads are still relatively
low, e.g., the northern Wadden Sea,
where no large rivers discharge. N-
loadings from  rivers through  Lake IJssel
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Figure 11. Over the investigated depth range (+0.15 - -1.05 m Mean Sea Level, MSL), the
average maximum wave intensity is equal, whereas, obviously, the duration of exposure
increases with increasing depth. The effect of this increasing exposure period is illustrated
by the kerbstones (1 x 1 m) placed on the tidal flat near Wierschuur, Terschelling (a), but
displaced after one month at -0.60 m MSL (b), which did not occur at 0 m MSL (sediments
were similar).

provide the main N-source to the western
Wadden Sea (Philippart & Cadée, 2000).
N-loading from mineralisation of
influxing organic matter from the North
Sea are in the same order of magnitude in
the western and northern Wadden Sea
(van Beusekom et al., 1999; in press).

Physical disturbance

Introduction

Transplanted seagrass disappeared below
-0.20 m MSL. This was neither a local
nor an incidental phenomenon: it
occurred at three locations in the Dutch
Wadden Sea, and in two subsequent years
(van Katwijk & Schmitz, 1993; Hermus,

1995). From several observations it
appeared that water dynamics increased
with increasing depth. For instance,
kerbstones that were placed on the tidal
flats, were severely displaced within one
month at -0.60 m MSL (Fig. 11), whereas
no such displacement occurred at 0 m
MSL. Also, with increasing depth,
erosion pits and sedimentary elevations
arose at a higher pace around exclosures
that were placed on the tidal flat at
several depths (Hermus, 1995; D.C.R.
Hermus, pers. comm.). Model
calculations revealed that, obviously, the
duration of the exposure increased with
increasing depth, however the maximum
wave intensity was equal at all tidal
depths investigated (van Katwijk &
Hermus, 2000).
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Figure 12. Experiments with exclosures
showed that below -0.20 m MSL
additional shelter is required to support
transplantation success.

Experiments show that wave dynamics
prevents transplantation success below -
0.20 m MSL

Transplantation experiments in the Dutch
Wadden Sea showed that reduced wave
dynamics by exclosures (Fig. 12),
prevented the loss of plants in the zone -
0.40 - -1.15 m MSL, and removal of the
exclosures after 1 month caused loss of
all plants within a few days. Light
limitation could not explain these results
(van Katwijk et al., 1998; van Katwijk &
Hermus, 2000). Bioturbation, often
causing transplantation losses along the
eastern and southern shores of the United
States (Fonseca et al., 1994; 1998; Davis
et al., 1998; Hammerstrom et al., 1998),
had no effects on the transplantations in
the Dutch Wadden Sea (van Katwijk &
Hermus, 2000). We concluded that the
depth-related transplantation success
could be attributed to increasing periods
of exposure to wave dynamics at
increasing depth. At these sites, the

average maximal orbital velocity at the
sediment reached circa 0.40 ms-1.
Transplantation failed below -0.20 m
MSL, corresponding to a relative period
of exposure to wave action of circa 60%.
If water dynamics are even higher (viz.
average maximal orbital velocity at the
sediment > 0.60 m s-1, they become too
high for the establishment and
maintenance of intertidal Z. marina at all
tidal depths (van Katwijk & Hermus,
2000).

This is also visible in several distribution
patterns of eelgrass found elsewhere in
NW Europe

The importance of water dynamics
determining the lower limit of eelgrass
beds is furthermore supported by
zonation patterns of intertidal Z. marina
beds in the Dutch and German Wadden
Sea, southwest Netherlands, and for
example, the Thames estuary (at present,
but also in the period that subtidal
eelgrass was still present, so light was not
limiting): plant cover diminished with
increasing depth (Harmsen, 1936; C. den
Hartog, pers. comm.; pers. obs. author),
which could not be attributed to light
limitation (Harmsen, 1936; Wijgergangs
& de Jong, 1999; van Katwijk & Hermus,
2000). Moreover, intertidal Z. marina
beds penetrate to larger depths when
shelter is present, i.e., behind a mussel
bed at the low tide level in Sylt Germany
(K. Reise, pers. comm.), behind the dam
encompassing the eelgrass bed at The
Plaat, Terschelling, located at -0.50 m
MSL (pers. obs. author, L.J.M.
Wijgergangs, pers. comm.) and directly
behind an island at Roscoff, France (C.
den Hartog, pers. comm.).

However, pre-1930s beds did occur
deeper than -0.20 m MSL. Why?

In a seeming contrast with our findings is
the luxurious growth of Z. marina around
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Figure 13. Mussel beds protect the hinterland against water dynamics, providing a suitable
location for seagrass restoration in this respect (photographs copyright ALTERRA,
courtesy to N. Dankers).

the low tide level in the Wadden Sea at
the beginning of the twentieth century.
Maximal orbital velocity at the sediment
is equal at all tidal depths down to a point
just below the low tide level. Below this
point, the maximal orbital velocity
decreases (van Katwijk & Hermus, 2000;
M.M. van Katwijk, unpubl.). At the low
tide level, the duration of exposure is
almost 100%, which is much higher than
the 60% exposure that was found to be
critical! At that time, two (not necessarily
genetically based) morphotypes of Z.
marina were present, a robust perennial
morphotype, and a flexible (often annual)
morphotype of Z. marina (Harmsen,
1936). These morphotypes were also

described for other parts of the world
(Harmsen, 1936; Tutin, 1938; Keddy &
Patriquin, 1978; intermezzo 2). The
larger type that occurred in the low-
intertidal-subtidal zone can withstand
higher water dynamics, because of its
robustness, and its relatively larger
belowground biomass providing better
anchoring facilities. It could not extend
towards higher tidal levels because it is
more susceptible to desiccation than the
flexible type of Z. marina that grows in
the mid-intertidal zone (Harmsen, 1936;
Tutin, 1938; Keddy & Patriquin, 1978;
van Katwijk et al., 2000). Knowing this,
our results can explain why non-
vegetated zones existed at non-sheltered
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Figure 14. Zones of communities protecting each other from deep to shallow against water
dynamics and erosion. Old literature revealed that two morphotypes of eelgrass were
present before the decline in 1930s: a robust perennial morphotype and a flexible
morphotype of Zostera marina. Restoration should aim at the latter type, as it disappeared
last and is still present in eastern and northern parts of the Wadden Sea, including the Ems
estuary. Before the robust morphotype can be reintroduced, additional research is
necessary to select suitable donor populations and test habitat requirements. MSL Mean
Sea Level, LT low tide.

locations in the Wadden Sea and in the
Thames estuary in the 1930s (Harmsen,
1936): the water dynamics were too high
for the flexible type of Z. marina, and the
period of emergence during low tide was
too long for the robust type of Z. marina.

What do these findings imply for the
reintroduction of seagrass in the Dutch
Wadden Sea?

Apart from the obvious requirement of
prohibition of shellfish fisheries (e.g.,
Fig. 4) to facilitate reintroduction of
Zostera marina, a careful selection of the
transplantation sites should be made. At a
local scale, relatively muddy sediments
and a thin layer of water during low tide
are preferred; at a regional scale,
particularly freshwater influence and the
availability of shelter are recommended.
It is of importance to quantify these
factors in the Wadden Sea, and map the
Z. marina habitat suitability in the
Wadden Sea. A start in this direction was
made for the Dutch Wadden Sea by de
Jonge et al. (1997; 2000), using the
factors wave energy, currents, grain size
and tidal depth in a GIS model.

Creation of shelter: seagrasses and
mussel beds protect each other and
saltmarshes in an undisturbed Wadden
Sea

Shelter can also be created, which is not
as artificial as it seems. Ecosystems in a
natural coastal gradient often protect each
other: sublittoral Z. marina beds can
protect mussel beds against storms
(Reusch & Chapman, 1995), mussel beds
can provide shelter to mid-littoral Z.
marina and Z. noltii populations (Fig. 13,
van Katwijk & Hermus, 2000; van
Katwijk et al., 2000; N. Dankers, pers.
comm.), as is supported by the extension
of Z. marina beds towards mussel beds at
low tide level (K. Reise, pers. comm.).
The shelter that is provided by mussel
beds will additionally stimulate the
accumulation of fine sediments and a
lesser degree of desiccation of the
sediment (van Katwijk et al., 2000),
which is favourable to Z. marina (van
Katwijk & Wijgergangs, 2000). The
overall positive effect of mussel beds on
Z. marina in the Wadden Sea is
supported by the eyewitness accounts in
1938 by Reigermans and coworkers
(1939), who observed at several locations
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in the western Wadden Sea that near
mussel beds, seagrass had survived the
wasting disease.

In turn, the presence of mid-
littoral Z. marina and Z.noltii beds can
reduce erosion of salt marshes, as
seagrasses accumulate sediments, in this
way providing a natural barrier in front of
the salt marsh edge (e.g., Rasmussen,
1977; Beardall et al., 1988; Gacia et al.,
1999; Koch, 2001; Granata et al., 2001;
D.J. de Jong, pers. comm.). This zonation
is depicted in Fig. 14.

Subtidal and low- intertidal
seagrass beds disappeared in the 1930s
(see introduction). Stable mussel beds
disappeared around 1990, except for a
few in the German Wadden Sea
(Beukema, 1992; Rudfeld, 1992;
Dankers, 1993; Nehls & Thiel, 1993;
Beukema & Cadée, 1996; Reise, 1998).

Management vision: Zostera marina bed
restoration by restoring the coastal
gradient

The coherence of the seagrass and mussel
bed zones makes restoration of one of the
separate zones less feasible than
simultaneous restoration of the complete
zonation. However, restoration of the
sublittoral Z. marina beds is complex, as
the morphotype that is suitable for this
zone probably has become extinct in the
Wadden Sea. A practical solution would
be to first restore stable mussel beds, as
these can maintain themselves without
sublittoral seagrass. Secondly, mid-
littoral Z. marina  and Z. noltii can be
transplanted, which will probably reduce
salt marsh erosion (Fig. 14). Finally, to
complete the gradient, sublittoral Z.
marina can be transplanted, provided a
suitable donor population has been found.

It should be noted that in a
pristine Wadden Sea eelgrass beds
flourished on (locally and/or temporarily)
unsheltered locations as well. Here they
led a dynamic and uncertain existence, as
becomes apparent from notes by Martinet

(1782), Oudemans et al. (1870) and den
Hartog & Polderman (1975). Likewise, it
is known that stable mussel beds are
incidentally destroyed by storms, though
subsequently colonising the same
location or in the close vicinity (Dankers
& Koelemaij, 1989). Recovery is possible
if sufficient sources and numbers of
propagules are available. In the present
situation, without such sources present, a
direct return to dynamic eelgrass beds is
not possible. This underlines our plea for
an indirect approach, through the
construction of more or less stable centres
of proliferation acting as refugia.

Conclusions

1. Suitable donor populations are
available.

2. Light is not limiting to at least -0.80
m MSL, which is the approximate
mean low tide level in the Dutch
Wadden Sea.

3. Below -0.20 m MSL, water
dynamics are too severe, unless
shelter is available.

4. High nutrient loads inhibit Zostera
marina, unless freshwater influences
are present.

5. Muddy sediments and a permanent
layer of water during low tide are
favourable.

6. Two types of Zostera marina
occurred in the pre-1930s Wadden
Sea, each suitable for another tidal
depth.

Recommendations

1. Restoration of estuarine gradients
(which is presently discussed as a
policy option in The Netherlands,
Anonymous, 1998).

2. Decrease of nutrient (particularly
nitrogen) loads.
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3. Restoration of areas of shelter (for
example mussel beds), active or
passive.

4. Careful selection of
transplantation sites; locally
(muddy sediments with a
permanent layer of water during
low tide) and regionally
(freshwater influence and shelter).

5. Improvement of the present GIS
map of the Z. marina habitat
suitability of the Dutch Wadden
Sea with data on salinity and
nutrient loads.

6. Prohibition of fisheries activities
in potential seagrass habitats.

7. Find answers to the new questions
that follow from the presented
results, as listed below.

New questions

1. What is the minimum size of a
founding population for a
sustainable re-establishment?

2. How can we keep the seed
containing shoots within the target
area until a minimum population
size is achieved (viz. develop a

technique to culture the seagrass
in situ)?

3. Is there a genetic basis for the
differences between the flexible
and robust type of Zostera
marina? If so,

4. What donor population (robust
type) would be suitable for the
zone around low tide?
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