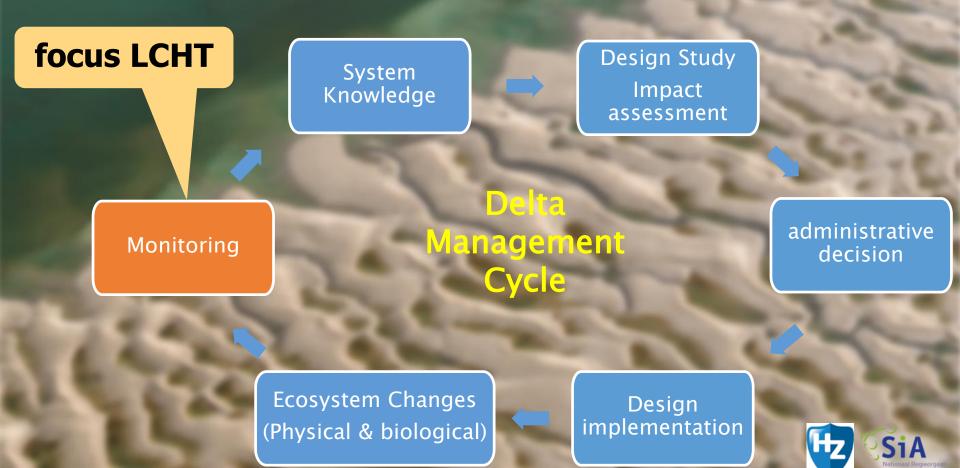
Raak–Publiek LCHT:

Low–Cost monitoring with High–Tech methodologies



Rationale

NL: large inter- and subtidal Natura 2000 areas

Overarching objective

 Test if Innovative Measuring Techniques can improve the delta management cycle?

CONVENTIONAL Measuring Techniques

Labour-intensive

Expensive

Few Measuring points

- Intermittently
 - (time/space)

INNOVATIVE Measuring Techniques

Less Labour-intensive

Cheaper

Multiple Measuring points

Continuously (time/space)

Joao .N. Salvador de Paiva

Tim Van Oijen

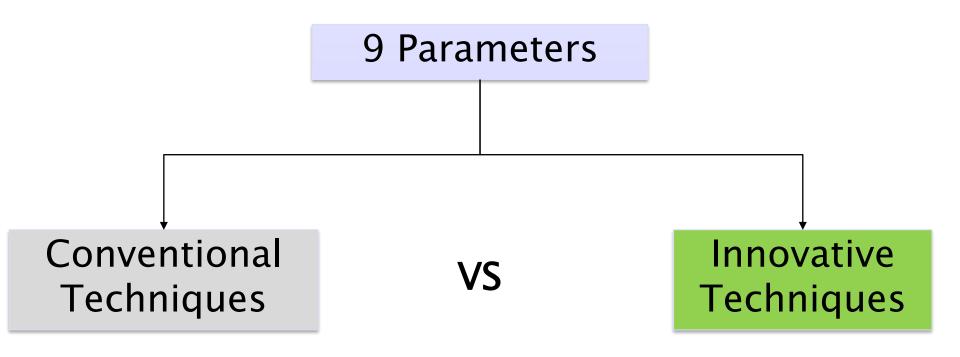
Wietse van de Lageweg

Tjeerd Bouma (HZ & NIOZ)

Lennart van IJzerloo

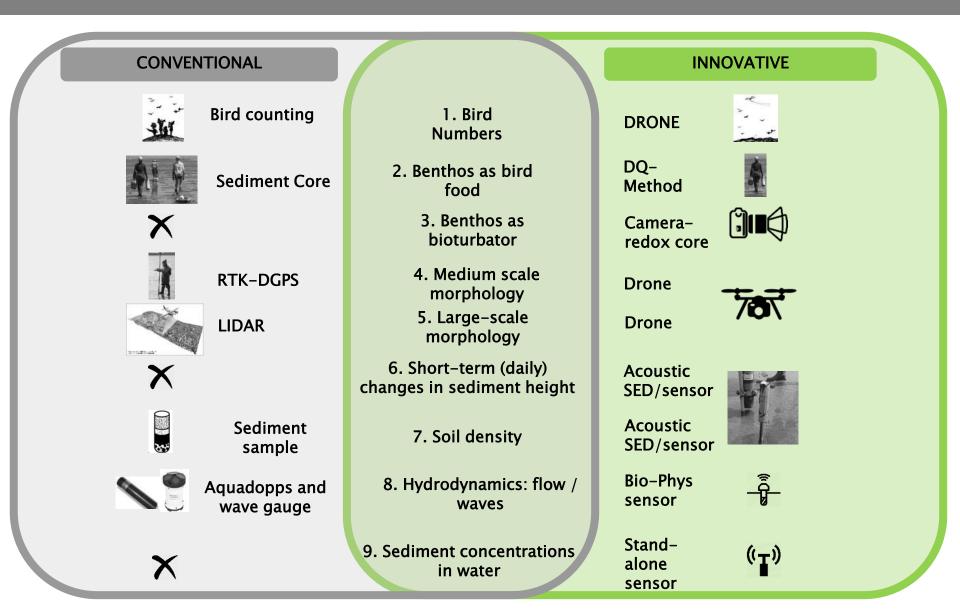
Jeroen van Dalen

Tom Ysebaert



Brenda Walles

Research assistant WMR


Dana Nolte

Original plan:

Original plan:

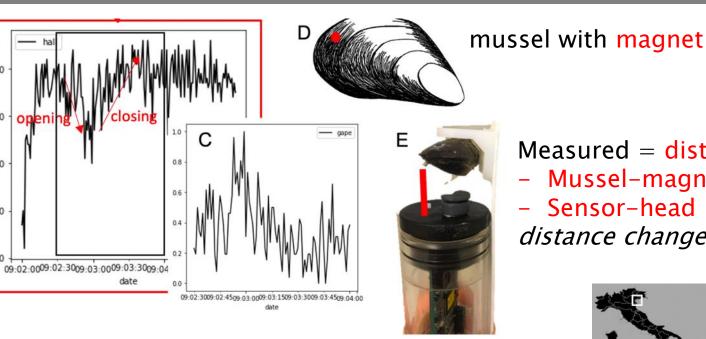
CONVENTIONAL	realized	INNOVATIVE
Bird counting	1. Bird Numbers	Drone
Sediment Core	2. Benthos as bird food	DQ- Method
×	3. Benthos as bioturbator	Camera- redox core
RTK-DGPS	4. Medium scale morphology	Drone
LIDAR	5. Large-scale morphology	Drone X 1 Echosounder
×	6. Short-term (daily) changes in sediment height	Acoustic SED/sensor
Sediment sample	7. Soil density	Acoustic SED/sensor
Aquadopps and wave gauge	8. Hydrodynamics: flow / waves	Bio–Phys 5 sensor b
×	9. Sediment concentrations in water	Stand-alone ((T)) sensor
RED = FAILED	X2. Benthos feeding behavior	Valve gaping mode – BioPhys
GREEN = success ORANGE = coming	X3. long-term continuous observation	Water-proof interval camera
BLUE = extra added	X4. Sub tidal biodiversity monitoring	Underwater vacuum cleaner Photogrammetry

CONVENTIONAL	presenters	INNOVATIVE
Bird counting	1. Bird Numbers	Drone
Sediment Core	2. Benthos as bird food	DQ- Method
×	3. Benthos as bioturbator	Camera- redox core
RTK-DGPS	4. Medium scale morphology	Drone
LIDAR	5. Large-scale morphology	Drone X 1 Echosounder
×	6. Short-term (daily) changes in sediment height	Acoustic SED/sensor
Sediment sample	7. Soil density	Acoustic SED/sensor
Aquadopps and wave gauge	8. Hydrodynamics: flow / waves	Bio-Phys sensor
×	9. Sediment concentrations in water	Stand-alone (T) sensor
×	X2. Benthos feeding behavior	Valve gaping mode – BioPhys
•	X3. long-term continuous observation	Water-proof interval camera
	X4. Sub tidal biodiversit monitoring	Underwater vacuum cleaner Photogrammetry

Topics per technique:

- 1) Why relevant
- 2) How does it work
- 3) Where do we (already / aim to) apply it

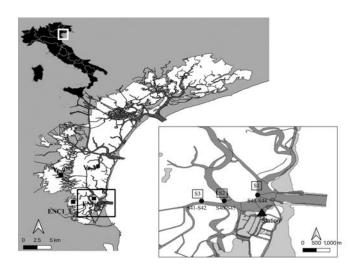
CONVENTIONAL	Realized	INNOVATIVE
Bird counting	1. Bird Numbers	Drone
Sediment Core	2. Benthos as bird food	DQ- Method
×	3. Benthos as bioturbator	Camera- redox core
RTK-DGPS	4. Medium scale morphology	Drone
	5. Large-scale morphology	Drone X 1 Echosounder
×	6. Short-term (daily) changes in sediment height	Acoustic SED/sensor
Sediment sample	7. Soil density	Acoustic SED/sensor
Aquadopps and wave gauge	8. Hydrodynamics: flow / waves	Bio-Phys sensor
×	9. Sediment concentrations in water	Stand-alone (T) sensor
X	X2. Benthos feeding behavior	Valve gaping mode – BioPhys
	X3. long-term continuous observation	Water-proof interval camera
	X4. Sub tidal biodiversit monitoring	Underwater vacuum cleaner Photogrammetry


CONVENTIONAL	Realized	INNOVATIVE
Bird counting	1. Bird Numbers	Drone
Sediment Core	2. Benthos as bird food	DQ- Method
×	3. Benthos as bioturbator	Camera- redox core
RTK-DGPS	4. Medium scale morphology	Drone
LIDAR	5. Large-scale morphology	Drone X 1 Echosounder
X	6. Short-term (daily) changes in sediment height	Acoustic SED/sensor
Sediment sample	7. Soil density	Acoustic SED/sensor
Aquadopps and wave gauge	8. Hydrodynamics: flow / waves	Bio-Phys sensor
×	9. Sediment concentrations in water	Stand-alone (T) sensor
×	X2. Benthos feeding behavior	Valve gaping mode – BioPhys
	X3. long-term continuous observation	Water-proof interval camera
	X4. Sub tidal biodiversit monitoring	Underwater vacuum cleaner Photogrammetry

CONVENTIONAL	Realized	INNOVATIVE
Bird counting	1. Bird Numbers	Drone
Sediment Core	2. Benthos as bird food	DQ– Method
×	3. Benthos as bioturbator	Camera- redox core
RTK-DGPS	4. Medium scale morphology	Drone
	5. Large-scale morphology	Drone X 1 Echosounder
X	6. Short-term (daily) changes in sediment height	Acoustic SED/sensor
Sediment sample	7. Soil density	Acoustic SED/sensor
Aquadopps and wave gauge	8. Hydrodynamics: flow / waves	Bio-Phys sensor
×	9. Sediment concentrations in water	Stand-alone (T) sensor
X	X2. Benthos feeding behavior	Valve gaping mode – BioPhys
	X3. long-term continuous observation	Water-proof interval camera
	X4. Sub tidal biodiversit monitoring	Underwater vacuum cleaner Photogrammetry

CONVENTIONAL	Realized	INNOVATIVE
Bird counting	1. Bird Numbers	Drone
Sediment Core	2. Benthos as bird food	DQ- Method
×	3. Benthos as bioturbator	Camera- redox core
RTK-DGPS	4. Medium scale morphology	Drone
LIDAR	5. Large-scale morphology	Drone X 1 Echosounder
×	6. Short-term (daily) changes in sediment height	Acoustic SED/sensor
Sediment sample	7. Soil density	Acoustic SED/sensor
Aquadopps and wave gauge	8. Hydrodynamics: flow / waves	Bio-Phys sensor
×	9. Sediment concentrations in water	Stand-alone (T) sensor
×	X2. Benthos feeding behavior	Valve gaping mode – BioPhys
	X3. long-term continuous observation	Water-proof interval camera
	X4. Sub tidal biodiversit monitoring	Underwater vacuum cleaner Photogrammetry

CONVENTIONAL	Realized	INNOVATIVE
Bird counting	1. Bird Numbers	Drone
Sediment Core	2. Benthos as bird food	DQ- Method
×	3. Benthos as bioturbator	Camera- redox core
RTK-DGPS	4. Medium scale morphology	Drone
LIDAR	5. Large-scale morphology	Drone X 1 Echosounder
X	6. Short-term (daily) changes in sediment height	Acoustic SED/sensor
Sediment sample	7. Soil density	Acoustic SED/sensor
Aquadopps and wave gauge	8. Hydrodynamics: flow / waves	Bio-Phys sensor
×	9. Sediment concentrations in water	Stand-alone (T)
×	X2. Benthos feeding behavior	Valve gaping mode – BioPhys
•	X3. long-term continuous observation	Water-proof interval camera
	X4. Sub tidal biodiversit monitoring	Underwater vacuum cleaner Photogrammetry

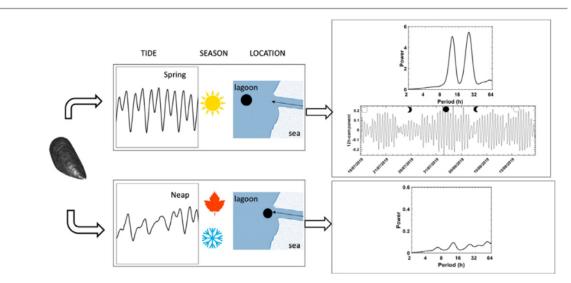

X2 – BioPhys \rightarrow valve-gaping mode

6-month test in Lagoon of Venice (also 1-month test Waddensea)

Measured = distance between Mussel-magnet

Sensor-head distance changes when mussel feeds

Bertolini et al (2022) Science of the Total Environment 768 – 145085


X2 – BioPhys \rightarrow valve-gaping mode

How to cope in heterogeneous coastal environments: Spatio-temporally endogenous circadian rhythm of valve gaping by mussels

HIGHLIGHTS

- It is necessary to understand how organisms respond to environmental changes.
- Transitional coastal areas are great model systems.
- Mussels behaviour was monitored long-term and in continuous in three sites.
- It followed the tidal rhythm particularly in more internal site and in summer.
- Responses to small scale changes are important for management and for predictions.

GRAPHICAL ABSTRACT

Bertolini et al (2022) Science of the Total Environment 768 - 145085

X2 – BioPhys \rightarrow valve-gaping mode

Mass production stage

- Useful for understanding carrying capacity
 - · Waddensea
 - Eastern Scheldt
 - Western Scheldt
 - North Sea

X3 - Waterproof time-laps camera's

- Meerwaarde met Mosselen
 - camera on stick to stay dry
- GoPro
 - · waterproof
 - BUT short operation time-lapse mode
- NIOZ time-laps camera's
 - resolution: 2592x1944
 - field of view: 170 degrees
 - \cdot 20 min interval + flash = 120 d
 - · 20 min interval (no flash) = 200 d
 - Reached mass-production stage

- Introduction
 - · underwater lab
 - need for monitoring methods sub-tidal
- Standard techniques
 - · In situ fluorescence
- LCHT innovations
 - · What are they?
 - · How will they be used in next projects?

CONVENTIONAL	Realized	INNOVATIVE
Bird counting	1. Bird Numbers	Drone
Sediment Core	2. Benthos as bird food	DQ- Method
×	3. Benthos as bioturbator	Camera- redox core
RTK-DGPS	4. Medium scale morphology	Drone
	5. Large-scale morphology	Drone X 1 Echosounder
×	6. Short-term (daily) changes in sediment height	Acoustic SED/sensor
Sediment sample	7. Soil density	Acoustic SED/sensor
Aquadopps and wave gauge	8. Hydrodynamics: flow / waves	Bio-Phys sensor
×	9. Sediment concentrations in water	Stand-alone (T) sensor
×	X2. Benthos feeding behavior	Valve gaping mode – BioPhys
	X3. long-term continuous	Water-proof interval camera
	X4. Sub tidal biodiversit monitoring	Underwater vacuum cleaner Photogrammetry