

European Regional Development Fund

Wireless communication for Smart Buildings Kortrijk, 07/04/2017

Smart Buildings: What for ?

- Access control
- Smart HVAC management
- Smart light management
- Indoor location
- Room management (occupancy / reservation / ...)
- Energy / water consumption monitoring
- Indoor air quality monitoring

A constant of the second secon

(<u>†</u>)

C

Smart Buildings: How ?

With a lot of different equipments:

• Automation & control equipments

POE REPEATER

• Actuators

2 Seas Mers Zeeën

opean Regional Development Fur

INCASE

• Sensors, <u>a lot of</u>

Smart Buildings & Wireless technologies

Why wireless technologies ?

- Because of costs of course, deployment costs
 - Especially for existing buildings
- Verstatility also

The goal: Zero Wire devices

- communicating wirelessly and
- running on battery for years or harvesting energy from environment

Range

Wireless technologies & Smart Buildings

- A lot of different already technologies
- But which one are relevant for the Smart building ?
 - You may find most of them in Smart buildings already
 - But some are more appropriate while others may disappear quickly
 - Smart Home vs. Smart Building
- Which characteristics are important for Smart building use cases ?
 - Cost
 - Power consumption
 - Indoor range
 - Ease of deployment
 - Durability
 - Data rate almost never important

Received Power = Transmitted Power + Gains – Losses

- The transmitter sends a message with a certain power
- The receiver receive a noisy signal with a certain power
- Received power must be greater than receiver **sensitivty**

Sensitivity of the receiver is the ability to extract the transmitted message from the received noisy signal

Receiver Sensitivity depends on

- The quality of receiver (its signal processing electronic)
- The bandwith of the signal
- The temperature

The **noise floor** is the physical limit of sensitivity $P_{dBm} = -174 + 10 \log_{10}(BW)$

Signals below the noise floor cannot be measured.

Bandwith	Noise floor
1 MHz	- 114 dBm
125 kHz	- 123 dBm
200 Hz	- 151 dBm

Typical Receiver Sensitivity

Sensitivity		Receiver
- 96 dBm	2.5.10 ⁻¹⁰ mW	STM300 ENOCEAN ASK
- 97 dBm	2.10 ⁻¹⁰ mW	TI CC2640R2
- 98 dBm	1.6.10 ⁻¹⁰ mW	STM300 ENOCEAN GFSK
- 103 dBm	5.10 ⁻¹¹ mW	TI CC2640R2 @125kbps / Z-Wave @9.6kbps
-137 dBm	2.10 ⁻¹⁴ mW	RN2483 LoRa@0.25kbps / ATIM Sigfox

- 1. Transmitter output power
- 2. Transmitter antenna gain
- 3. Path loss (free space or indoor)
- 4. Miscellaneous losses
- 5. Receiver antenna gain
- 6. Receiver sensitivity

Maximum link budget = Max Output power – Receiver sensitivity

The link budget: Transmit power

TN

45

433MHz

Increasing transmit power

- ISM rules / health norms
- Power consumption

	Transmit pov	ver (mW)	Transmit power (dBm)	S	tandard
	2 mW		4 dBm	Z	2-Wave
	3 mW		5 dBm	E	Bluetooth
	5 mW		7 dBm	E	nOcean
	25 mW		14 dBm	L	.oRa & Sigfox
	39 mW		16 dBm	V	Vi-Fi
	Green. Si enoc	mart. Wireless. Cean [®]	W SB	i) F	i) both [°]
IT 0 –	860 MHz		UMTS 1920 – 2170 MHz		
863 - 870MHz		2.4	1 - 2.5	5 GHz	

») NFC»)

13.56 MHz

European Regional Development Fund

FM

87.5 – 108 MHz

The link budget: max link budget

Typical maximum link budget

• Path loss has to be lower

Standard	Max link budget
Z-Wave (9.6 kb/s)	107 dBm
Bluetooth (125 kb/s)	108 dBm
EnOcean	103 dBm
LoRa (0.25 kb/s)	151 dBm
Sigfox	151 dBm

The link budget: path loss

Free space loss

- The attenuation of the signal in free space
- FSL = 20 $\log_{10}(d)$ + 20 $\log_{10}(f)$ 147.55

Distance	Frequency	Attenuation	
10 m	2.4 GHz	60 dBm	
100 m	2.4 GHz	80 dBm	
1 km	2.4 GHz	100 dBm	
1.6 km	2.4 GHz	104 dBm	* 5
10 km	868 MHz	111 dBm	
960 km	868 MHz	150 dBm	SIGFOX One network A billion dreams

The link budget: path loss

Indoor path loss

- ITU indoor propagation model
- IPL = N $\log_{10}(d)$ + P_f(n) + 20 $\log_{10}(f)$ 147.55

N: distance power loss coefficient n: number of floors P_f(n): floor loss penetration factor

Factors and coefficents depends on building type

• residential / office /commercial / ...

The link budget: path loss

Free space vs. Indoor path loss

Distance	Frequency	Free space Attenuation	Residential, one floor	Office, two floors
10 m	2.4 GHz	60 dBm	72 dBm	89 dBm
20 m	2.4 GHz	66 dBm	80 dBm	98 dBm
40 m	2.4 GHz	72 dBm	89 dBm	107 dBm
100 m	2.4 GHz	100 dBm	100 dBm	119 dBm
100 m	868 MHz	71 dBm	-	110 dBm
200 m	868 MHz	77 dBm	-	119 dBm

- Originally developped by Semtech promoted by LoRa Alliance
- Frequency ISM 868 MHz

Cost	Intermediate, but should decrease rapidly (<12\$ for SoC)
Power consumption	Several months to several years on battery (msg / day)
Indoor range	Best solution, several hundred meters, even with 5+ floors
Ease of deployment	Best solution for large buildings, no infrastructure except a base station
Durability	New technology, but very fast growing ecosystem. However, currently relies on one silicon vendor only

Wi-Fi

- Standard 802.11
- Frequency ISM 2,4 GHz and 5 GHz

Cost	Very cheap (< 2\$ for a SoC)
Power consumption	Only days on battery, needs external power
Indoor range	~ 40 meters indoor
Ease of deployment	Depends on whether a local wlan infrastructure may be used
Durability	Mature technology and large ecosystem

- Originally developed by Nokia, now Bluetooth Special Interest Group
- ISM 2,4GHz

Cost	Very cheap (< 2\$ for SoC)
Power consumption	Several months to years on battery or energy harvesting
Indoor range	~ 40 meters indoor
Ease of deployment	Ok for smaller & residential buildings otherwise needs complementary infrastructure
Durability	Mature technology and very large ecosystem (mobile), but new for the building

- Originally developed by an offspring of Siemens
- Frequency ISM (868 MHz Europe)

Cost	Quite expensive (<25\$ for a SoC)
Power consumption	Several months to years on battery or energy harvesting
Indoor range	~ 40 meters indoor
Ease of deployment	Very simple for smaller & residential buildings. Use repeaters and gateways for larger buildings
Durability	Growing ecosystem, a lot of equipments already. BLE 5 is a serious challenger. One silicon vendor only.

Z-Wave

- Developed by Danish company Zen-Sys
- Frequency ISM (868 MHz Europe)

Cost	Intermediate (<10\$ for a SoC)
Power consumption	Several months on battery (mesh networks)
Indoor range	~ 40 meters indoor
Ease of deployment	Simple for smaller & residential buildings. Complexity of mesh networks
Durability	Well established ecosystem, a lot of equipments already, but BLE 5 and EnOcean are serious challengers

Summary

- Zero wire devices is the ultimate goal
- Deployment and maintenance costs are paramount
- LoRa & BLE 5 are new to the building sector, but are also the most promising technologies in two different sub-markets (residential & small building vs. large buildings)

