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Abstract

The worldwide observed dramatic decline of seagrasses has typically been attributed to multiple stressors
such as eutrophication, disease, sedimentation, and toxicity events. Using principal component analysis and
(multivariate) logistic regression, we investigated the importance of 30 commonly measured variables in
explaining the presence and absence of the temperate seagrass species Zostera marina and Zostera noltii at 84
Western European locations. Although many interrelated variables influence seagrass presence in our dataset,
presence or absence of both species could be reliably predicted by using only two easy-to-measure variables. A
logistic regression model of Z. marina correctly predicted 77% of all observations by including water column light
attenuation and sediment pore-water reduction oxidation potential (RedOx). The Z. noltii model had an 86%
accuracy based on only tidal location (intertidal or subtidal zone) and pore-water RedOx. Applying the models to
five evaluation sites demonstrated that both models can be usefully applied as tools for seagrass ecosystem
restoration and conservation.

Seagrasses are rhizomatous marine angiosperms that
form extensive meadows in temperate to tropical regions.
These beds are among the most productive ecosystems on
Earth and harbor a high biodiversity of animal life. In the
last decades, seagrasses have experienced dramatic losses
that have been attributed to multiple stressors (Orth et al.
2006). Degradation in temperate regions is attributed
mostly to eutrophication, increased water temperature,
and disease (Orth et al. 2006). Whereas temperature and
disease cause direct damage to seagrasses, eutrophication
summarizes a number of indirect and direct problems. In
the first place, eutrophication may lead to reduced light as
growth of phytoplankton, epiphytes, and macroalgae is
enhanced (Burkholder et al. 2007). Moreover, eutrophica-
tion can also trigger toxicity events caused by, for instance,
increased levels of ammonia (Brun et al. 2002; Van der
Heide et al. 2008) or high sulfide concentrations in the
sediment pore water (Pedersen et al. 2004).

Because seagrasses are highly important for the ecology
and economic value of many coastal zones, numerous
efforts have been made to restore seagrass ecosystems (Orth
et al. 2006; Van der Heide et al. 2007; Van Katwijk et al.
2009). Even though costs for these projects are high,
success is limited and very uncertain (about 30% success;
Orth et al. 2006). One explanation for this low success
might be that estimations of abiotic habitat suitability of
potential restoration sites are unreliable because of the
complex interplay of many different stressors. Although a
multitude of environmental variables have been found to
influence seagrass presence, only a few studies have tried to
disentangle the relative importance of multiple abiotic

variables for predicting seagrass habitat suitability (Van
Katwijk et al. 2000; Short et al. 2002). In this study, we
investigate to what extent different abiotic factors correlate
with occurrence of the seagrasses Zostera marina and
Zostera noltii, species that dominate seagrass ecosystems in
many temperate regions. We sampled 84 different locations
scattered all over Western Europe, measuring 30 different
environmental variables that are commonly used to
evaluate ecosystems. Using logistic regression (LR) analy-
ses, we constructed for both species a simple multivariate
model containing the most important environmental
variables. To evaluate the usefulness of the models for
restoration or conservation, we predicted the probability of
occurrence of both species for five sites which had a history
of seagrass loss and where recovery or applied restoration
measures had different levels of success.

Methods

Data collection—All data were collected in areas where
seagrasses were present or were historically present (Fig. 1).
The sampling sites in these areas were randomly selected
and each site was sampled once in the growth season (May–
September) of 2005. Depth of these locations varied
between 0.5 m above to 5 m below mean water level. At
each site, we recorded presence or absence of both Z.
marina and Z. noltii and noted whether the location was
intertidal or subtidal. Next, we sampled and pooled three
replicates of the surface water, sediment pore water (top
10 cm), and sediment (top 10 cm). Pore water was sampled
using Rhizon pore-water samplers, and sediments were
collected with a core sampler. Samples were frozen
immediately after collection for transport to the laboratory* Corresponding author: t.van.der.heide@rug.nl
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in Nijmegen (the Netherlands) where they were analyzed.
As a measure for hydrodynamic exposure, we calculated
the maximum and modified effective fetch length and
included the exposure index developed by the Physical
Shore-Zone Mapping Task Force of British Columbia,
Canada (Howes et al. 1999).

Sample analyses—Apart from the hydrodynamic expo-
sure variables, we included 26 additional commonly
measured environmental variables. The light attenuation
coefficient of the water column was measured as Photo-
synthetically Active Radiation (PAR) (400–700 nm) with a
quantum light meter (Li-192, Li-Cor). Salinity, pH, and
reduction oxidation potential (RedOx) of the sediment pore
water were measured immediately after sampling with a
multi-probe meter (556 Multi Parameter Sampler, Yellow
Springs Instruments). Surface-water salinity and pH were
measured on site. Total sulfide (TS) levels in the pore water
were determined immediately after sampling by measuring
TS with an ion-selective silver-sulfide electrode in a mixed
solution containing 50% sulfide anti-oxidation buffer and
50% sample (Lamers et al. 1998). Alkalinity of all water
samples was determined by titration with 0.01 mol L21

HCl to pH 4.2 (Lamers et al. 1998). The concentrations of
orthophosphate and ammonium in all water samples were
measured colorimetrically, using ammonium molybdate
and salicylate (Lamers et al. 1998). Nitrate was determined
by sulfanilamide after reduction of nitrate to nitrite in a
cadmium column (Wood et al. 1967). Total nitrogen and
total phosphorus in the surface water were measured as
nitrate and orthophosphate after digestion with persulfate
(Koroleff 1983). We measured total inorganic carbon (TIC)

in pore and surface water as CO2 on an infrared carbon
analyzer (PIR-2000, Horiba Instruments) after conversion
of all TIC to CO2 by phosphoric acid. Organic matter
content in freeze-dried sediments was estimated as weight
loss on ignition at 550uC. Carbon content and nitrogen
content in the sediment were determined on freeze-dried
samples by a carbon–nitrogen–sulfur analyzer (type
NA1500; Carlo Erba Instruments). Total phosphorus in
the sediment was measured on an inductively coupled
plasma emission spectrophotometer (Spectroflame, Spectro)
after digestion with nitric acid (Smolders et al. 2006b). Grain
size distribution of the sediment was measured on freeze-
dried samples by laser diffraction on a Beckman Coulter
particle size analyzer. All devices were calibrated according
to standardized procedures provided by the manufacturers.
For all analyses, quality assurance measures included
blanks, replicate analyses, and matrix spikes. Recoveries
from matrix spikes ranged from 95% to 107%. Repeated
analyses did not reveal differences greater than 5%.

Data analysis—We used 79 locations of the 84-location
dataset for the modeling procedures, thereby excluding five
sampling locations. These five sites had a recorded history
of seagrass loss and recovery or restoration attempts
resulting in different levels of success. After model
construction, we used these locations to evaluate usefulness
of the models and to exemplify how LR models may be
applied for restoration and conservation purposes. The
excluded sites were two sites from the Dutch Wadden Sea
(Balgzand and Mokbaai), one site from the Baltic Sea
(Puck Bay) and two sites from Dutch brackish closed-off
water bodies (Lake Grevelingen and De Bol). Balgzand and

Fig. 1. General overview of the geographical setting of the 84 sampled sites. All sites are
located in regions where seagrass is present or has been present in the past.
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Mokbaai are both sites where restoration efforts by
transplantation have been attempted (Van Katwijk et al.
2009). Z. marina transplantations were unsuccessful at both
sites, but Z. noltii was successfully transplanted at Balgzand
in 1993, resulting in a population that is at present still
expanding. Puck Bay is a site near the city of Gdansk in
Poland, where Z. marina is now slowly recovering after the
population nearly disappeared in the last century (Boström
et al. 2003). Z. marina disappeared from De Bol at the end
of the 1970s because of eutrophication and changes in the
hydrology of the site (Den Hartog 1994). The population at
Lake Grevelingen became extinct at the end of the 1990s.
Although the cause for this is still not fully understood, it
has been suggested that this isolated estuarine population
was (over-)adapted to low salinity and could not cope with
a dramatic increase in salinity of the lake that took place in
the 1980s and 1990s (Kamermans et al. 1999).

To get an overview of the relations between all variables
included in this study, we first performed a standard-
ized principal component analysis (PCA). Next, we fitted
response curves by binary logistic regression (LR) to the
presence–absence data for every variable. The general
equation from this analysis describes the probability P that
a species can occur at a certain value for the fitted

environmental variable (Jongman et al. 1995):

P(x)~
exp (b0zb1xzb2x2)

1z exp (b0zb1xzb2x2)
ð1Þ

The parameters b0, b1, and b2 are regression coefficients,
with b0 as intercept. The equation can yield either a
symmetrical bell-shaped (Gaussian) curve if b2 is significant
or a sigmoid curve if b2 is not significant (and thus
excluded). The parameters were analyzed for significance
using the likelihood ratio test (p , 0.05). We used
logarithmically transformed data (y 5 log10(x + 1)) when
these gave a more significant fit. The calculated hydrody-
namic exposure index and tidal location (subtidal or
intertidal) were analyzed as categorical variables.

Next, we included all significant variables from the LR
analysis in a multiple LR (MLR) procedure to construct a
multivariate model. The applied equation is similar to
function 1, except that a larger number of parameters can
now be included (Jongman et al. 1995):

P(x)~
exp (b0z b1:1x1zb1:2x1

2z:::zbn:1xnzbn:2xn
2)

1z exp (b0z b1:1x1zb1:2x1
2z:::zbn:1xnzbn:2xn

2)

ð2Þ

Fig. 2. Results of the PCA showing the relations between all variables included in our
analyses. W and P indicate surface and pore-water variables, respectively. S indicates a sediment
variable and H indicates a variable related to hydrodynamics. Eigenvalues of the x- and y-axis
were 0.272 and 0.156, respectively, indicating that both axes together explained 42.8% of all
variance in the dataset.

2020 Van der Heide et al.
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We used a multiple stepwise regression procedure with
forward selection. The likelihood ratio test was applied to
determine whether a variable should be included or not
(p , 0.05). Additionally, we calculated the percentage
reduction of deviance compared with the null model that
included only a constant term (Peeters and Gardeniers
1998), and applied leave-one-out cross-validation (LOO) to
assess the reliability of the resulting model. In this method,
the model is built leaving out one single observation from
the dataset. Next, the obtained model is used to predict
presence or absence for the left-out observation. This
procedure is repeated for every observation in the dataset.
Based on the results, we calculated prediction success, mean
parameter values, and standard deviation for the model
parameters. Finally, we applied the obtained models from
the multivariate LR procedure to the data from the five
sites that were excluded from the analyses to evaluate their
potential use as prediction tools for restoration success or
failure.

Results

Our 79-site database included 34 observations for Z.
marina and 19 for Z. noltii. PCA revealed that many
variables correlated with each other (Fig. 2). For instance,
light attenuation showed strong positive correlations with
water column variables like total nitrogen, total phospho-
rus, orthophosphate, TIC, alkalinity, and pore-water
sulfide. These variables showed a strong inverse correlation
with RedOx. Most surface-water nitrogen and phosphorus
variables did not relate strongly with sediment or pore-
water nitrogen and phosphorus variables.

Results from the LR analyses (Table 1) show that the
parameter for the second-order term (b2) was not
significant in most cases, resulting in sigmoid-shaped curves
for the majority of the variables. Light attenuation
produced the greatest reduction in deviance for Z. marina
(33.8%; Fig. 3A), followed by surface-water total nitrogen
(17.0%; Fig. 3B). Nearly all nitrogen and phosphorus

Fig. 3. Probability of presence for (A, B) Z. marina and (C, D) Z. noltii plotted against the variables that showed the highest
significance. Dots are actual observations (1 5 present, 0 5 absent). The x-axes for light attenuation and surface-water total nitrogen
are logarithmically transformed.

2022 Van der Heide et al.



content–describing variables (in water layer as well as
sediment) were significant for Z. marina, revealing a
consistently negative effect of both nitrogen and phospho-
rus on its probability of occurrence. Nitrogen and
phosphorus seem much less important for Z. noltii. The
greatest reduction in deviance was accomplished by tidal
location of the sites (24.8%; Fig. 3C), followed by surface-
water salinity (20.5%; Fig. 3D), pore-water salinity
(20.4%), pore-water nitrate (11.6%), and surface-water
pH (11.6%).

MLR analysis revealed that most of the variance in
species presence could be explained by including only two
variables in the models of both seagrasses. For Z. marina,
light attenuation was the most significant parameter in the
model. A significant part of the remaining deviance could be
explained by including RedOx in the model as a second
parameter. The obtained model correctly predicted 77% of
all presence–absence data and reduced deviance by nearly
38% (Table 2). Tidal location was the most important
variable for predicting Z. noltii presence. As for the Z.
marina model, RedOx was also adopted by the Z. noltii
model to improve its explanatory potential. The model
predicted over 86% of all observations correctly and reduced
deviance with nearly 34%. Furthermore, results from the
LOO procedure yield a prediction success similar to that of
the models constructed from the full dataset (Table 2). The
procedure produces low standard deviations for model
parameters, with mean parameter values that deviate only
slightly from those obtained from the complete dataset.

Finally, we tested the models obtained from the MLR
procedure on the five evaluation sites (Table 2). The Z.
marina model correctly predicted absence or presence in

four out of five cases. This model produced a false positive
reading for Lake Grevelingen, predicting a probability for
presence at this site of over 75%. The Z. noltii model
correctly predicted all selected test sites.

Discussion

The observed worldwide decline of seagrasses has
classically been ascribed to a multitude of environmental
factors (Orth et al. 2006). Here, we show through the use of
LR that presence or absence of the temperate species Z.
marina and Z. noltii in the European coastal zone can be
predicted to a large degree of confidence by only two easy-
to-measure variables: light attenuation and RedOx for Z.
marina and tidal location and RedOx for Z. noltii. This is
remarkable because all sites from our dataset were sampled
only once, thereby probably increasing noise because of
infrequent events (e.g., algal blooms, toxicity events).
Moreover, our analyses of five evaluation sites illustrate
that the models can be useful tools to monitor (change in)
habitat suitability for conservation purposes or for
selecting suitable sites for restoration projects. For exam-
ple, based upon our results, Z. marina transplantations at
Balgzand or Mokbaai might not have been attempted.
Instead, Lake Grevelingen could have been selected,
because our model indicates that this site is more suitable.
Because Lake Grevelingen is a closed-off water body, it is
also likely that natural reestablishment from more salt-
tolerant Z. marina populations is difficult at best. This
might help explain why the species has not returned to the
site, and illustrates why restoration by transplantation may
be particularly necessary at this site.

Table 2. Results from the multivariate logistic regression analysis, the leave-one-out cross-validation procedure. and evaluation sites.

Zostera marina Zostera noltii

Multiple logistic regression

Parameter Unit Value Parameter Unit Value

Constant 3.551 Constant 23.090
Light attenuation m21 212.95 RedOx mV 0.007
RedOx mV 0.005 Tidal location* 3.122
R (%) 37.7 R (%) 33.8
% correct 77.2 % correct 86.1

Leave-one-out cross-validation

Parameter Unit Mean SD Parameter Unit Mean SD

Constant 3.556 0.133 Constant 23.095 0.094
Light attenuation m21 212.97 0.545 RedOx mV 0.007 4.1231024

RedOx mV 0.005 3.3631024 Tidal location* 3.126 0.099
% correct 75.9 % correct 86.1

Evaluation sites

Location P{ Predicted Observed Location P{ Predicted Observed

Balgzand 0.005 0 0 Balgzand 0.697 1 1
De Bol 0.021 0 0 De Bol 0.025 0 0
Grevelingen 0.751 1 0 Grevelingen 0.034 0 0
Mokbaai 0.012 0 0 Mokbaai 0.320 0 0
Puck Bay 0.593 1 1 Puck Bay 0.015 0 0
% correct 80 % correct 100

* Categorical variable.
{ P is the probability that either Z. marina or Z noltii occurs at a site. A prediction is positive (i.e., 1) when probability P is over 0.5.

Predicting seagrass habitat suitability 2023



Although both multivariate logistic models include just
two variables, our results do not imply that seagrass
presence is dependent on only these variables. The analyses
merely show that the included variables are good indicators
for general seagrass habitat suitability. Notably, single LR
analyses demonstrated that seagrass occurrence correlated
with many variables, and PCA showed that these variables
were strongly interrelated. For instance, light availability is
often indirectly dependent on nutrient content of the water
layer (Burkholder et al. 2007), whereas pore-water RedOx
conditions are typically related to organic matter degrada-
tion rates and resulting toxic sulfide levels (Smolders et al.
2006a). Increased nutrient levels in the water layer are well
known to result in an increased growth of algae in the water
layer. Apart from decreasing light availability, enhanced
algal production also increases input of easily degradable
organic matter into the sediment (Dahllof and Karle 2005).
Such an increase will result in increased decomposition
rates (involving sulfate reduction) along with a concomi-
tant decrease of the RedOx potential and an increase of
sulfide concentrations. Faster organic matter decomposi-
tion will raise inorganic carbon levels of the system and
increase oxygen consumption rates of the sediment. The
latter may, together with the increased sulfide concentra-
tions, strongly affect the vitality of seagrass root systems
(Pedersen et al. 2004). Thus, our results indicate that
seagrass presence is probably often dependent on multiple
interrelated factors, but because of strong correlations
among variables, inclusion of only a few variables in
prediction models can be sufficient to predict seagrass
habitat suitability.
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